

# Early Gastric Gancer Diagnosis Management

KAMRAN B LANKARANI M.D.

DISTINGUISHED PROFESSOR OF MEDICINE







### Last hospital in northern Gaza halts operation 6 Dec 2023



### Estimated number of new cases in 2020, World, both sexes, all ages



### Estimated number of deaths in 2020, World, both sexes, all ages



### Age standardized (World) incidence rates, stomach, males, all ages



#### Age standardized (World) incidence rates, stomach, females, all ages



Graph production: IARC (http://gco.iarc.fr/today) World Health Organization World Health Organization ID International Agency for Research on Cancer 2018

### Number of new cases in 2020, both sexes, all ages





### Age-standardized (World) incidence and mortality rates, top 10 cancers



Journal of Gastrointestinal Cancer https://doi.org/10.1007/s12029-021-00722-x

**ORIGINAL RESEARCH** 



### Incidence Trends of Gastric Cancer in Southern Iran: Adenocarcinoma and Non-cardia Gastric Cancer Are More Rising Among Younger Ages

Mahanaz Hosseini-Bensenjan<sup>1</sup> · Hossein Molavi Vardanjani<sup>2</sup> · Zahra Khosravizadegan<sup>3</sup> · Kamran Bagheri-Lankarani<sup>4</sup>

Accepted: 26 September 2021 © Springer Science+Business Media, LLC, part of Springer Nature 2021











### Overall Survival After Diagnosis NCI International EBV-Gastric Cancer Consortium



NIH) NATIONAL CANCER INSTITUTE



### Incidence, both sexes



| Population                       | Number    |
|----------------------------------|-----------|
| Asia                             | 769 728   |
| Europe                           | 133 133   |
| *Latin America and the Caribbean | 67 058    |
| Africa                           | 31 148    |
| North America                    | 29 275    |
| Oceania                          | 3 359     |
| Total                            | 1 033 701 |

### Mortality, both sexes



|                   | Population      | Number  |
|-------------------|-----------------|---------|
|                   | Asia            | 584 375 |
|                   | Europe          | 102 167 |
| *Latin America an | d the Caribbean | 51 914  |
|                   | Africa          | 28 707  |
|                   | North America   | 13 403  |
|                   | Oceania         | 2 119   |
|                   | Total           | 782 685 |



Five-year age-standardised net survival (%)

Back

# Prognosis of Gastric Cancer is related to stage of diagnosis!





Faculty of Medicine

# **Importance of early Diagnosis of GC**

- In localized distal gastric cancer>50% of patients can be cured.
- Early-stage disease accounts for only 10% to 20% of all cases
- Even with apparent localized disease, the 5-year survival rate of patients with proximal gastric cancer is only 10% to 15%.
- Although the treatment of patients with disseminated gastric cancer may result in palliation of symptoms and some prolongation of survival, long remissions are uncommon.

# **Diagnosis of EGC**

# Endoscopy

- Endoscopy & photofluorography
- Magnification chromoendoscopy
- Image-enhanced endoscopy technology
- Artificial intelligence

Pepsinogen ,H. Pylori Ab
Low PG I:PG II ratio

Serum

1/26/2024

21

- Circulating tumor cells
- Non coding RNA
  - microRNA
  - Circular RNA
- Exosomes

5

Cell free DNA

# **Missed Lesions**

The rate of missed lesions as high as 10% in the 3 years

- Guidelines on the performance measures in upper GI endoscopy : at least total seven minutes and 3-4 minutes observation in stomach
- The reasons why lesions are missed:
  - Some stomach areas (blind areas) are difficult to observe by endoscopy (error in observation).
  - Although a lesion is observed, it is not recognized as a lesion (error in detection).
  - A lesion is recognized but wrongly diagnosed (error in characterization or diagnosis).



9-mm adenocarcinoma.

### MASTERS OF ENDOSCOPY

## How I inspect the stomach

Hisao Tajiri, MD,<sup>1</sup> Mário Dinis-Ribeiro, MD<sup>2</sup>

Tokyo, Japan; Porto, Portugal

GASTROINTESTINAL ENDOSCOPY Volume 89, No. 6 : 2019

# How to eliminate blind areas

**1.** Gastric angle, posterior wall, and greater curvature of the gastric corpus.

- Frontal view, wherever possible, by adjusting the left and right angles and the amount of air.
- 2. The lesser curvature in the cardia
- up-angle and right-angle turns during retroflex examination
- **3.** Avoid adherence of mucus to the gastric mucosa

Images should be captured before specific areas, such as the greater curvature of the angularis and the pyloric ring, are passed, to avoid confounding by endoscope-induced abrasion/erythema.

The rugae of the greater curvature of the gastric corpus should be adequately stretched by insufflation to inspect between the rugae.











## How to eliminate detection errors

**Factors affecting detection :** 

- The direction of endoscopy (front and tangential observations)
- The distance (distant and near views)
- The amount of insufflation (the degree of extension of the gastric wall)
- The light intensity.

The same site and the same lesion should be carefully observed in multiple ways

If focal lesion found still observe the entire stomach first to avoid missing any other lesions and then observe the lesion site.

## How to eliminate errors in diagnosis

 It is necessary to enhance the ability of endoscopic diagnosis by observing many lesions to accumulate experience in diagnosis.

 Because normal endoscopy has a limitation in qualitative diagnosis, it is helpful to effectively use magnifying/near-focus endoscopy with virtual chromoendoscopy, making optical biopsy possible.

# Pay attention to subtle changes of mucosal color and morphology.

### Clues:

- Mucosal discoloration (erythema or pallor)
  - Morphologic changes of the mucosal surface (protruding, elevated, or depressed)
- Tapered or interrupted mucosal folds
- Spontaneous bleeding
  - Localized opacity of the mucosa (abrupt change in background vascular/ mucosal pattern)
- Loss of mucosal glossiness.
















# OPEN ACCESS

For numbered affiliations see end of article.

#### **Correspondence to**

Dr Matthew Banks, University College London Hospital, University College London Hospitals NHS Foundation Trust, London NW12PG, UK; matthew.banks2@nhs.net

Received 16 December 2018 Revised 6 May 2019 Accepted 17 May 2019 Published Online First 5 July 2019

# British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma

Matthew Banks,<sup>•</sup><sup>1,2</sup> David Graham,<sup>1,3</sup> Marnix Jansen,<sup>•</sup><sup>4</sup> Takuji Gotoda,<sup>5</sup> Sergio Coda,<sup>6</sup> Massimiliano di Pietro,<sup>7,8</sup> Noriya Uedo,<sup>9</sup> Pradeep Bhandari,<sup>10</sup> D Mark Pritchard,<sup>11</sup> Ernst J Kuipers,<sup>12</sup> Manuel Rodriguez-Justo,<sup>4</sup> Marco R Novelli,<sup>4</sup> Krish Ragunath,<sup>13</sup> Neil Shepherd,<sup>14</sup> Mario Dinis-Ribeiro<sup>15</sup>

#### ABSTRACT

Gastric adenocarcinoma carries a poor prognosis, in part due to the late stage of diagnosis. Risk factors include *Helicobacter pylori* infection, family history of gastric cancer—in particular, hereditary diffuse gastric cancer and pernicious anaemia. The stages in the progression to cancer include chronic gastritis, gastric atrophy (GA), gastric intestinal metaplasia (GIM) and dysplasia. The key to early detection of cancer and improved survival is to non-invasively identify those at risk before endoscopy. However, although biomarkers may help in the detection of patients with chronic atrophic gastritis, there is insufficient evidence to support their use for population screening. High-quality endoscopy with full mucosal visualisation is an important part of improving early detection. greatest risk and intervene with recognised efficacious treatments, including endoscopic resection,before cancer is established. The British Society of Gastroenterology (BSG) endoscopy committee agreed to create a guideline to provide statements and recommendations on the prevalence, risks, diagnosis, treatment, surveillance and screening of gastric premalignant and early gastric malignant lesions. The principal patient group are those found to have GA, GIM, gastric epithelial dysplasia or early gastric adenocarcinoma limited to the mucosal or superficial submucosal layers. The target users include gastroenterologists, GI surgeons, pathologists, endoscopists and general practitioners. We followed the Appraisal of Guidelines for Research  Endoscopic appearances on White Light Endoscopy of gastric dysplasia and early gastric cancer (differences in color, loss of vascularity, slight elevation or depression, nodularity, thickening, and abnormal convergence or flattening of folds) require escalation to Image Enhanced Endoscopy and, where available, magnification endoscopy (evidence level: low quality; grade of recommendation: strong; level of agreement: 100%).

 IEE as the best imaging modality to accurately diagnose and stage gastric dysplasia and early gastric cancer (evidence level: moderate quality; grade of recommendation: strong; level of agreement: 100%).













## **Diagnosis of early gastric cancer**

- Difficult to recognize upon ordinary endoscopy
  - Subtle changes in microstructural and microvascular patterns
  - Uncommonly present as a polypoid growth (except in colon)
- Developed from a background of premalignant changes (eg Gastric IM)
  - Sometimes difficult to diagnose



aculty of Medicine

# Algorithm for the systematic examination of the upper gastrointestinal tract

**Evidence: Experts' opinion** 

INVITED REVIEW

Annals of Gastroenterology (2013) 26, 11-22

#### The endoscopic diagnosis of early gastric cancer

Kenshi Yao Fukuoka University Chikushi Hospital, Japan



#### Minimum total gastroscopy procedure time 8 min



## **Higher Rates of EGC in SE Asia**

- The longstanding screening programs
- EGC diagnostic expertise
- Quality of endoscopy
- Difference in the interpretation of gastric histology in Eastern versus non-Asian centers

1/26/2024

46

# Classification



#### **Paris Classification**

#### Type I vs Type II a

- Type I lesions extend above the mucosa more than 2.5 mm (the width of the closed cups of a biopsy forceps).
- Pathologically, the height of the lesion is more than double the thickness of the adjacent mucosa.

#### Type IIc and type III

- Type IIc lesions are slightly depressed with a normal epithelial layer or superficial erosions.
- Type III lesions are characterized by ulceration, with loss of the mucosa and possibly submucosa.

- Conventional endoscopy (white light)

Image-enhanced endoscopy

Digital method Optical-digital method Chromoendoscopy method

Magnifying endoscopy

Optical method

L Digital method

- Microscopic endoscopy

- Optical method

Confocal method

Tomographic endoscopy

Endoscopic ultrasonography

- OCT (Optical Coherence Tomography)

Contrast method
Lineation-enhanced method
Auto-fluorescence method
Narrow band light method
Infrared ray method
Stain method
Contrast method

e.g.: FICE/i-scan e.g.: Structure enhancement e.g.: AFI/SAFE e.g.: NBI/BLI/LCI/i-scan OE e.g.: IRI e.g.: Lugol e.g.: Indigocarmine e.g.: Optical zoom endoscopy e.g.: Digital zoom e.g.: Endo-cytoscopy e.g.: Endomicroscopy

Endoscopic imaging



NBI simplified classification for gastric pathology

GE Port J Gastroenterol 2022;29:299-310

1/26/2024

50

| Α.                                       |                            |                      |                        |                            |                          |  |  |
|------------------------------------------|----------------------------|----------------------|------------------------|----------------------------|--------------------------|--|--|
| Atrophy score                            |                            | Corpus               |                        |                            |                          |  |  |
|                                          |                            | No atrophy (Score 0) | Mild atrophy (Score 1) | Moderate atrophy (Score 2) | Severe atrophy (Score 3) |  |  |
| Antrum (Including<br>incisura angularis) | No atrophy (Score 0)       | Stage 0              | Stage I                | Stage II                   | Stage II                 |  |  |
|                                          | Mild atrophy (Score 1)     | Stage I              | Stage I                | Stage II                   | Stage III                |  |  |
|                                          | Moderate atrophy (Score 2) | Stage II             | Stage II               | Stage III                  | Stage IV                 |  |  |
|                                          | Severe atrophy (Score 3)   | Stage III            | Stage III              | Stage IV                   | Stage IV                 |  |  |
| B.<br>IM score                           |                            | Corpus               |                        |                            |                          |  |  |
|                                          |                            | No IM (Score 0)      | Mild IM (Score 1)      | Moderate IM (Score 2)      | Severe IM (Score 3)      |  |  |
| Antrum (Including                        | No IM (Score 0)            | Stage 0              | Stage I                | Stage II                   | Stage II                 |  |  |
| incisura angularis)                      | Mild IM (Score 1)          | Stage I              | Stage I                | Stage II                   | Stage III                |  |  |
|                                          | Moderate IM (Score 2)      | Stage II             | Stage II               | Stage III                  | Stage IV                 |  |  |
|                                          | Severe IM (Score 3)        | Stage III            | Stage III              | Stage IV                   | Stage IV                 |  |  |
|                                          |                            |                      |                        |                            |                          |  |  |

Operative link on gastritis assessment staging system (A) and operative link on gastric intestinal metaplasia assessment (B) staging system. IM, intestinal metaplasia; OLGA, Operative link on gastric intestinal metaplasia assessment (B) staging system. IM, intestinal metaplasia; OLGA, Operative link on gastric intestinal metaplasia assessment.

1/26/2024

51

Adapted from Weng CY et al. (27)

Higher intensity of colour means higher risk of Early Gastric Cancer.

ISGE

#### Endoscopic Grading of Gastric Intestinal Metaplasia (EGGIM) scale

|                                          | Antrum                                                   |                                                                                                                                             | Incisura | Corpus              |                      |  |
|------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|----------------------|--|
|                                          | lesser<br>curvature                                      | greater<br>curvature                                                                                                                        |          | lesser<br>curvature | greater<br>curvature |  |
| No intestinal metaplasia                 | 0                                                        | 0                                                                                                                                           | 0        | 0                   | 0                    |  |
| Focal (≤30% intestinal metaplasia)       | 1                                                        | 1                                                                                                                                           | 1        | 1                   | 1                    |  |
| Diffuse (>30% intestinal metaplasia)     | 2                                                        | 2                                                                                                                                           | 2        | 2                   | 2                    |  |
| Intestinal metaplasia score for the area | 0-4                                                      |                                                                                                                                             | 0–2      | 0–4                 |                      |  |
| Total EGGIM score and management         | 0–10<br>No IM: 0 poin<br>Low-risk IM: 1<br>High-risk IM: | ) points – no surveillance<br>k IM: 1–4 points – surveillance only if additional risk factors<br>sk IM: ≥5 points – endoscopic surveillance |          |                     |                      |  |

1/26/2024

52



### Kimura-Takemoto Classification of Endoscopic Gastric Mucosal Atrophy





### **M-NBI findings of IM**

Light blue crest at the edge of mariginal crypt epithelium

Defined as fine, blue white line on the crest of the epithelial surface/gyri.

Highly predictive of histological intestinal metaplasia

#### **Risk Stratification**

C1:0%C2: 0.25%

- C3: 0.71%
- 01: 1.32%

02:3.70%03: 5.33%

Digestion (2015) 91:30-6.

H.pylori eradication , no IM :

 Cumulative 5-year incidence of gastric cancer 1.5%

H.pylori eradication, antral IM:

• Cumulative 5-year incidence of gastric cancer 5.3%

H.pylori eradication, corpus IM:

 Cumulative 5-year incidence of gastric cancer 9.8%

Gastrointest Endosc. 2016, Oct; 84(4):618-24

#### **Risk Stratification**

- IM at a single location has a higher risk of gastric cancer but because of prevalence of up to 33% surveillance is not justified.
- Advanced stages of atrophic gastritis and those with a family history of gastric cancer may benefit from a more intensive follow-up (e.g., every 1–2 years after diagnosis)
- Patients with advanced stages of atrophic gastritis (severe atrophic changes or intestinal metaplasia in both antrum and corpus, OLGA/OLGIM III/IV, EGGIM scores 5–10 have increased the risk of gastric cancer and should be followed up with a high quality endoscopy every 3 years

57

#### **Kyoto classification score**



| Kyoto classification  | Score |  |  |  |  |
|-----------------------|-------|--|--|--|--|
| Atrophy               |       |  |  |  |  |
| None, C1              | 0     |  |  |  |  |
| C2 and C3             | 1     |  |  |  |  |
| 01-03                 | 2     |  |  |  |  |
| Intestinal metaplasia |       |  |  |  |  |
| None                  | 0     |  |  |  |  |
| Antrum                | 1     |  |  |  |  |
| Corpus and antrum     | 2     |  |  |  |  |
| Enlarged folds        |       |  |  |  |  |
| Absence               | 0     |  |  |  |  |
| Presence              | 1     |  |  |  |  |
| Nodularity            |       |  |  |  |  |
| Absence               | 0     |  |  |  |  |
| Presence              | 1     |  |  |  |  |
| Diffuse redness       |       |  |  |  |  |
| None                  | 0     |  |  |  |  |
| Mild (with RAC)       | 1     |  |  |  |  |
| Severe                | 2     |  |  |  |  |
| Kvoto score           | 0-8   |  |  |  |  |



#### **Risk Stratification**

The Kyoto classification score in patients without a history of H.
 pylori eradication of 0, 1, and ≥2 was found to be associated with
 H. pylori infection rates of 1.5, 45, and 82%, respectively

 Kyoto classification scores of ≥4 may be associated with increased gastric cancer risk

 A modified Kyoto classification, which included open-type endoscopic atrophy, invisible regular arrangement of collecting venules at the incisura, virtual CE detecting intestinal metaplasia in >30% of the corpus and map-like redness in the corpus, performs better in determining EGC risk than the original Kyoto classification.





Figure 10 VS classification. Arrows show demarcation lines



#### EGC on endoscopy





#### **Risk Stratification**

# Atrophy, intestinal metaplasia, nodularity, enlarged fold, and gastric xanthoma are endoscopic findings related to the risk of gastric cancer.

Guidelines for endoscopic diagnosis of early gastric cancer. Digestive Endoscopy, 32: 663-698.



#### Endoscopy

- The GC endoscopy false negative rate can be as high as 25 percent
- Most centers 10% in three yrs

#### How to avoid ?

- A minimum duration of seven minutes
  Minimal inspection time of the stomach 3 min
- Station-based protocols (with 22 pictures)
- Adequate gas insufflation
- Mucosal cleaning as needed
  Use of mucolytic before endoscopy
- Image-enhanced endoscopy
- Sedation/anticholinergic/glucagon



#### **Pre Endoscopy**

a) 30 min before EGD, 100 mL of water mixed with 2 mL of acetylcysteine (200 mg/mL), and 0.5 mL activated dimethicone (40 mg/mL)

1/26/2024

67

b) Just before EGD, 200 ml of water with 160 mg (4 drops) of simethicone .

#### Steps of high-quality upper endoscopy

#### **Pre-procedure**

- Patient' assessment
- History review
- Physical examination
- UGI cancer risk factors
- Informed consent
- Premedication
- Sedation
- Defoaming agents
- Antispasmodics

#### Intra-procedure

- Procedural time
  - Minimum 7 minutes\*
- Photo-documentation
- Minimum 10 images\*
- Image-enhancing techniques
- Lugol solution
- Acetic acid
- Narrow-spectrum imaging (NBI / BLI)
- Biopsy protocols
  - Eosinophilic esophagitis
  - Barrett's esophagus (Seattle protocol)
  - Atrophic gastritis (Sydney protocol)
  - Celiac disease

#### **Post-procedure**

- Registration of complications
- Patient satisfaction data
- Appropriate follow-up for high-risk conditions

\*European Society of Gastrointestinal Endoscopy (ESGE) performance measures for upper gastrointestinal endoscopy (2016) 1/26/2024 68

## **Endoscopic diagnosis of EGC**



## Endoscopic diagnosis of EGC



DEN Open, Volume: 4, Issue: 1, First published: 04 November 2023)



AI


### Spectroscopy



# Spectroscopy



# **Diagnosis of EGC**

## Endoscopy

- Endoscopy & photofluorography
- Magnification chromoendoscopy
- Image-enhanced endoscopy technology
- Artificial intelligence

Pepsinogen ,H. Pylori Ab
Low PG I:PG II ratio

Serum

1/26/2024

75

- Circulating tumor cells
- Non coding RNA
  - microRNA
  - Circular RNA
- Exosomes

5

Cell free DNA



Liquid biopsy markers for gastric cancer. Primary gastric tumor sheds circulating tumor cells (CTCs) into the bloodstream. Some of the CTCs undergo apoptosis which allows for the release of the cell's genetic material, including circulating tumor DNA (ctDNA) and non-coding RNAs.

ctDNA

76





DOI: 10.3748/wjg.v29.i17.2515 Copyright ©The Author(s) 2023.





ISGE

1/26/2024

S.

80



ISGE

81

1/26/2024























| Risk factors                         | OR   | 95% CI    |
|--------------------------------------|------|-----------|
| Clinical variables                   |      |           |
| Male sex                             | 1.25 | 1.03-1.52 |
| Cardiopathy                          | 1.54 | 1.05-2.25 |
| Antithrombotics                      | 1.63 | 1.30-2.03 |
| Cirrhosis                            | 1.76 | 1.14-2.73 |
| Chronic kidney disease               | 3.38 | 2.31-4.97 |
| Lesion characteristics               |      |           |
| Flat/depressed morphology            | 1.43 | 1.12–1.84 |
| Carcinoma (vs. dysplasia)            | 1.46 | 1.12–1.91 |
| Ulceration                           | 1.64 | 1.21-2.21 |
| Localization in the lesser curvature | 1.74 | 1.10-2.73 |
| Tumour size >20 mm                   | 2.70 | 1.44-5.06 |
| Procedural/pharmacological variables |      |           |
| Procedure duration >60 min           | 2.05 | 1.19-3.55 |
| $H_2RA$ (vs. PPI)                    | 2.13 | 1.21-3.74 |
| Resected size >30 mm                 | 2.85 | 1.40-5.77 |

Risk Factors for Post Procedural Bleeding After ESD

5.1% risk PPB

Second look endoscopy was not associated with lower PPB (ORbleeding 1.34, 95% CI 0.85– 2.12)

>50% of bleeding occur before second-look endoscopy

Prophylactic hemostasis on second-look endoscopy is not capable of significantly reducing PPB.

Gastro intest Endosc. 2016 Oct;84(4):572-86.



#### **EUS for staging of EGC**

The overall accuracy of staging

- EUS : 67.4 % (644 / 955)
- Conventional endoscopy : 73.7 % (704 / 955) ( P < 0.001).</li>
- Miniprobe EUS vs radial EUS : (79.5 % vs. 59.6 %, P < 0.001), but did not differ significantly from that of conventional endoscopy (79.0 %).

1/26/2024

89

Endoscopy . 2010 Sep;42(9):705-13

Conventional white-light endoscopy should be used for determining the depth of invasion of early gastric cancer. If this is difficult, EUS may be a useful adjunctive diagnostic tool.

<u>Guidelines for endoscopic diagnosis of early gastric cancer. Digestive Endoscopy,</u> 32: 663-698.





#### The "non-extension sign"

Localized increase in thickness and rigidity due to deep submucosal invasion.

Highly useful diagnostic marker, with 92 % sensitivity and 97.7 % specificity for diagnosing gastric SM-d (depth of 500  $\mu m$  or more) cancer.

Can only be seen when the gastric wall is strongly distended

The area with invasion to the deep SM can be seen as a trapezoid elevation with elevation of the surrounding mucosa.

Gastric Cancer . 2017 Mar;20(2):304-313

### Is this pt candidate for endoscopy Rx

T1a/ T1b , depth of invasion of cancers at least 0.5 mm

- Hypertrophy or fusion of concentrated folds
- Tumor size at least 30 mm
- Marked redness
- Irregular surface
- Marginal elevation Submucosal tumor-like raised margins
- Non-extension sign

Conventional endoscopy may be superior to EUS (73.7% vs. 67.4%, P < 0.001) in detecting deep invasion

Endoscopy . 2010 Sep;42(9):705-13.

Dig Dis . 2019;37(3):201-207



1/26/2024

92

ISGE

| Main features                                       | Low risk (curative)                                                                              | High risk (noncurative)                                                                             |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| R0, intramucosal, well to moderately differentiated | - any size without ulceration, or<br>- $\leq$ 30 mm with ulceration                              | – >30 mm with ulceration                                                                            |
| R0, SM1, well to moderately differentiated          | <ul> <li>– ≤30 mm and</li> <li>– no lymphovascular invasion and</li> <li>– no ulcers</li> </ul>  | <ul> <li>- &gt;30 mm or</li> <li>- lymphovascular invasion or</li> <li>- with ulceration</li> </ul> |
| R0, intramucosal, poorly differentiated             | <ul> <li>– ≤ 20 mm and</li> <li>– no lymphovascular invasion and</li> <li>– no ulcers</li> </ul> | <ul> <li>&gt;20 mm or</li> <li>lymphovascular invasion or</li> <li>with ulceration</li> </ul>       |

1/26/2024

93

## Ulceration Size>30 mm Poorly differentiated



doi: 10.1111/den.13684

#### Guidelines

ISG

#### Guidelines for endoscopic diagnosis of early gastric cancer

Kenshi Yao, D Noriya Uedo, D Tomoari Kamada, Toshiaki Hirasawa, D Takashi Nagahama, Shigetaka Yoshinaga, Masashi Oka, Kazuhiko Inoue, Katsuhiro Mabe, Takashi Yao, Masahiro Yoshida, Isao Miyashiro, Kazuma Fujimoto and Hisao Tajiri

Japan Gastroenterological Endoscopy Society, Tokyo, Japan

Gastric Cancer (2017) 20 (Suppl 1):S28–S38 DOI 10.1007/s10120-016-0680-7

**REVIEW ARTICLE** 

Development of an e-learning system for teaching endoscopists how to diagnose early gastric cancer: basic principles for improving early detection

Kenshi Yao<sup>1</sup> · Noriya Uedo<sup>2</sup> · Manabu Muto<sup>3</sup> · Hideki Ishikawa<sup>4</sup>



### Conclusion

- GC would be a growing problem in future both in younger and elderly
- Risk stratification for FU of precancerous lesions could guide need and frequency of surveillance
- High quality endoscopy can diagnose EGC
- EGC can be treated endoscopically but there is need to avoid futile treatments

